標題:

Maths - trigo (urgent)

發問:

In triangle ABC, BC=5, AC=4 and cos(A-B)=7/8. Find the value of cosC.

最佳解答:

此文章來自奇摩知識+如有不便請留言告知

In triangle ABC, sinA/BC=sinB/AC=sinC/AB sinA/5=sinB/4=sinC/AB (sinA/5)(sinB/4)=(sinC/AB)^2 sinA sinB/20=(sinC)^2/AB^2 (sinA sinB)/20=[1-(cosC)^2]/(5^2+4^2-2X5X4cosC) sinA sinB=20[1-(cosC)^2]/(41-40cosC) . . . . . . . . . . (1) cos(A-B)=7/8 cosA cosB+sinA sinB=7/8 cosA cosB=7/8-sinA sinB cosA cosB-sinA sinB=7/8-2sinA sinB cos(A+B)=7/8-2sinA sinB -cos[180?-(A+B)]=7/8-2sinA sinB -cosC=7/8-2sinA sinB 8cosC=16sinA sinB-7 . . . . . . . . . . (2) Substitute (1) into (2): 8cosC=16X20[1-(cosC)^2]/(41-40cosC)-7 8cosC(41-40cosC)=320-320(cosC)^2-7(41-40cosC) 328cosC-320(cosC)^2=320-320(cosC)^2-287+280cosC 48cosC=33 ∴ cosC=33/48

其他解答:FAD2A23AB937987B

arrow
arrow
    創作者介紹
    創作者 dvhtlbz 的頭像
    dvhtlbz

    dvhtlbz的部落格

    dvhtlbz 發表在 痞客邦 留言(0) 人氣()