標題:
Maths - trigo (urgent)
發問:
In triangle ABC, BC=5, AC=4 and cos(A-B)=7/8. Find the value of cosC.
最佳解答:
- nike籃球@1@
- NDS一問
- 兆之後是甚麼-@1@
- 我想知道寵物小精靈大部份精靈既名呀!!!_12@1@
- 2899 紫金礦業
- 寵物小精靈的名字_10
- 情人節圖圖@1@
- 鋼閘通常用什麼標準呢
- 可以幫我歌曲去人聲!-@1@
- 男嬰無奈無辜身懷遺傳怪疾要出生卻未長皮膚,是否神的旨意命定?
此文章來自奇摩知識+如有不便請留言告知
In triangle ABC, sinA/BC=sinB/AC=sinC/AB sinA/5=sinB/4=sinC/AB (sinA/5)(sinB/4)=(sinC/AB)^2 sinA sinB/20=(sinC)^2/AB^2 (sinA sinB)/20=[1-(cosC)^2]/(5^2+4^2-2X5X4cosC) sinA sinB=20[1-(cosC)^2]/(41-40cosC) . . . . . . . . . . (1) cos(A-B)=7/8 cosA cosB+sinA sinB=7/8 cosA cosB=7/8-sinA sinB cosA cosB-sinA sinB=7/8-2sinA sinB cos(A+B)=7/8-2sinA sinB -cos[180?-(A+B)]=7/8-2sinA sinB -cosC=7/8-2sinA sinB 8cosC=16sinA sinB-7 . . . . . . . . . . (2) Substitute (1) into (2): 8cosC=16X20[1-(cosC)^2]/(41-40cosC)-7 8cosC(41-40cosC)=320-320(cosC)^2-7(41-40cosC) 328cosC-320(cosC)^2=320-320(cosC)^2-287+280cosC 48cosC=33 ∴ cosC=33/48
其他解答:FAD2A23AB937987B
留言列表